Источники питания
Источники питания .
Микросхемы-стабилизаторы напряжения. Лабороторные блоки питания. Сетевые адаптеры. Зарядные устройства для никель-кадмиевых аккумуляторов и батарей. Сетевой источник питания с гасящим конденсатором. Преобразователь напряжения для питания ФЭУ.ЛАБОРАТОРНЫЕ БЛОКИ ПИТАНИЯ
При настройке аппаратуры в радиолюбительской практике полезно иметь стабилизированные источники питания с плавной регулировкой выходного напряжения от нуля, что реализовано в описываемых далее устройствах. Максимальный выходной ток блоков - 1 А, для второго варианта ограничение тока может быть плавно установлено от единиц миллиампер до указанной величины. Блоки защищены от перегрузки и перегрева элементами использованной микросхемы КР142ЕН12А.
Принципиальная схема первого варианта блока приведена на рис. 95. Напряжение со вторичной обмотки трансформатора Т1 выпрямляется диодным мостом VD1, сглаживается конденсатором С3 и стабилизируется микросхемой DA1. Для уменьшения рассеиваемой на микросхеме мощности вторичная обмотка выполнена с отводами, выбираемыми переключателем SA1. В верхнем и среднем положениях SA1 (диапазоны выходных напряжений 13...20 и 6,5...13,5 В) включение микросхемы DA1 стандартно. На диапазоне О...7 В нижний по схеме вывод переменного резистора R3 подключен к
источнику питания -1,25 В, собранному на микросхеме DA2. В результате выходное напряжение микросхемы DA1 сдвинуто на 1,25 В вниз и регулируется от нуля.
В конструкции использован трансформатор ТН32, имеющий четыре вторичные обмотки по 6,3 В. Для источника отрицательного напряжения свободной обмотки нет, поэтому его выпрямитель собран по нестандартной схеме на диодах VD2 и VD3. Внешне она напоминает выпрямитель с удвоением напряжения, но ни один из выводов вторичных обмоток трансформатора Т1 не подключен к общему проводу.
При такой схеме выпрямителя напряжение на конденсаторе С7 примерно равно полной амплитуде (от пика до пика) напряжения относительно общего провода на том отводе вторичной обмотки, к которому подключен конденсатор С4. Поскольку с общим проводом при одном полупериоде соединяется один из выводов вторичной обмотки, а при следующем - другой, амплитуда напряжения на выбранном отводе зависит от положения переключателя SA2. В результате на диапазоне 0... 7 В напряжение на конденсаторе С7 соответствует по абсолютной величине напряжению на конденсаторе С6 (примерно 12... 15 В), составляет около 5 В при среднем положении SA2 и равно нулю при верхнем положении.
Интересна роль резистора R1.
Для нормальной работы выпрямителей необходимо, чтобы токовая нагрузка моста VD1 по крайней мере в два раза превышала нагрузку VD2, VD3, что и обеспечивает этот резистор. Без него после включения зарядившиеся до своих нормальных напряжений конденсаторы С3 и С7 начинают перезаряжаться - напряжение на конденсаторе СЗ медленно повышается, на конденсаторе С7 - падает. Конденсаторы С1, С2, С5 и С6 устраняют высокочастотные помехи, возникающие в момент закрывания диодов, С8 уменьшает выходное сопротивление блока по переменному току и снижает выбросы напряжения на выходе в моменты переключения диапазонов. Диоды VD4 - VD6 защищают микросхемы при переходных процессах и в аварийных режимах. Почти все элементы блока размещены на печатной плате из стеклотекстолита толщиной 1,5 мм (рис. 96). Использованы резисторы МЛТ, R3 - проволочный, типа ППЗ-40. Последовательно с ним можно установить еще один переменный резистор сопротивлением 51 Ом, что облегчит точную установку значения выходного напряжения. Оксидные конденсаторы - импортные аналоги К50-35, СЗ установлен параллельно печатной плате. Плата позволяет использовать и отечественные указанного типа, однако в этом случае в качестве СЗ придется установить четыре конденсатора 1000 мкфх40 В. Возможно использование и конденсаторов с осевыми выводами, для чего на плате предусмотрены соответствующие отверстия.
Остальные конденсаторы - КМ-6, К 10-17 или другие керамические. При монтаже блока были использованы диоды 1N4001 от разобранного импортного устройства, их вполне можно заменить на любые малогабаритные импульсные или выпрямительные диоды, например, КД103А или КД522Б. Вместо VD1 подойдет любой выпрямительный мост на выходной ток не менее 1 А, например, КЦ402 или КЦ405 с любыми буквенными индексами, кроме Ж и И. Мост можно собрать и из любых диодов на рабочий ток 1 А, например, КД243А -Ж (отечественный аналог диодов 1N4001 - 1N4007). Микросхема DA1 установлена на игольчатый теплоотвод размерами 20 х 80 х 55 мм, он закреплен на печатной плате двумя винтами М2,5 и выступает за ее габариты. Плата, трансформатор и остальные элементы устройства установлены в пластмассовую коробку размерами 70х95х150 мм.
При этом теплоотвод расположен у боковой стенки большего размера. В ней напротив теплоотвода просверлено 35 вентиляционных отверстий диаметром б мм с шагом 10 мм. Выключатель SA1 и предохранитель FU1 установлены на боковой стенке, микроамперметр РА1 (М4248 на 100 мкА), переключатель SA2 (ПГ2-17-ЗП4Н), резистор R3 и выходные гнезда - на крышке. Настройка блока сводится к подбору резисторов R2, R4, R5 для получения на выходе напряжений, указанных на схеме у переключателя SA1. Если резисторы установлены с допуском 5%, то подбор может потребоваться только для R2, его удобно установить указанной на схеме величины и подбирать параллельно подключаемый ему резистор. Резисторы R6, R7 необходимы для точной установки выходного напряжения 0 В для случая, когда выходное напряжение микросхемы DA2 меньше (по абсолютной величине), чем DA1. При указанном сопротивлении R7 увеличение сопротивления резистора R6 на 1 Ом уменьшает напряжение на выходе блока на 0,5 мВ. Если такая точность установки нулевого напряжения не нужна или выходное напряжение микросхемы DA2 больше, чем DA1, вместо резистора R6 следует поставить перемычку. Если не требуется регулировка выходного напряжения от нуля или микросхемы КР142ЕН18А нет, часть элементов устройства, расположенных по схеме рис. 95 ниже общего провода, не устанавливают. Самостоятельно трансформатор для рассматриваемого блока удобно изготовить, используя в качестве основы трансформатор питания от лампового радиоприемника, радиолы или телевизора. Все вторичные обмотки такого трансформатора следует аккуратно смотать (они обычно намотаны поверх первичной). При этом следует подсчитать число витков накальной обмотки, она намотана самым толстым проводом. После этого следует намотать изолированным проводом диаметром 0,7...0,9 мм три обмотки - первую (выводы 9 -13 на рис. 95) с вдвое большим числом витков, чем у накальной, и две с таким же, как накальная (выводы 7 - 8 и 14 -16). Если у используемого трансформатора две различных накальных обмотки, следует ориентироваться на обмотку с большим числом витков.
Обмотка с меньшим числом витков служила для питания нити накала кенотрона, напряжение на ней - 5 В. При изготовлении трансформатора для источника отрицательного напряжения лучше намотать еще одну обмотку проводом диаметром 0,15...0,3 мм с тем же, что и остальные, или несколько меньшим числом витков. В этом случае выпрямитель для него можно сделать по однополупериодной схеме, а стабилизатор - на микросхеме КР142ЕН12А. Из двух однотипных микросхем можно выбрать одну с меньшим напряжением стабилизации и установить ее на место DA1, резисторы R6 и R7 при этом становятся излишними. Схема второго варианта блока питания приведена на рис. 97. Основное отличие от описанного выше блока заключается во введении операционного усилителя DA2 и установке микросхемы стабилизатора отрицательного напряжения -6 В вместо -1,25 В. Пока выходной ток достаточно мал и падение напряжения на токоизмерительном резисторе R2 меньше, чем установлено резистором R3, на
выходе 6 ОУ напряжение близко к напряжению на входе микросхемы DA1 (вывод 2), диод VD4 закрыт и ОУ не участвует в работе устройства. Если падение напряжения на R2 станет больше, чем на R3, напряжение на выходе DA2 снизится, откроется диод VD4, напряжение на выходе блока уменьшится до ограничения тока до установленной величины. Переход блока в режим стабилизации тока индицируется включением светодиода HL1. Так как в режиме короткого замыкания напряжение на выходе ОУ должно быть меньше, чем -1,25 В, на величину падения напряжения на диоде VD4 и светодиоде HL1 (около 2,4 В в сумме), то напряжение отрицательного источника питания ОУ выбрано равным -6 В. Это напряжение необходимо при всех положениях SA2, пришлось переключать и вход выпрямителя VD2, VD3. Микросхему КР1168ЕН6Б можно заменить на аналогичную с индексом А, на 79L06, а также на КР1162ЕН6А(Б), КР1179ЕН06, 7906, но у них габариты и расстояние между выводами больше (как у КР142ЕН12А), цоколевка совпадает. Микросхема К140УД6 заменима на КР140УД608, К140УД7, КР140УД708. Светодиод HL1 может быть любого типа красного свечения.
В качестве R2 автор установил четыре параллельно соединенных резистора С2-29 2 Ом, 0,125 Вт. К точности этого резистора никаких требований нет, его можно изготовить и самостоятельно из отрезка высокоомного провода. Резистор R12 - СПЗ-19а. Остальные элементы - те же, что и в первом
варианте блока, аналогично и конструктивное оформление. Чертеж печатной платы приведен на рис. 98. Сопротивления резисторов R3 и R4 могут отличаться от указанных на схеме в два раза, важно лишь, чтобы их соотношение было сохранено 1:10. Резистор R3 можно также заменить на два последовательно включенных, причем сопротивление второго должно составлять 5...10% от первого, это облегчит точную установку тока ограничения. При настройке блока подбором резистора R7 устанавливают выходное напряжение 20 В и регулировкой R12 - О В. Поскольку эти регулировки взаимозависимы, их надо повторить несколько раз. При пользовании источником в режиме стабилизатора тока переключатель SA2 следует устанавливать в положение, соответствующее минимальному напряжению, при котором в нагрузке обеспечивается необходимый ток. Блок будет стабилизировать ток и при положении SA2, обеспечивающем большее напряжение, но мощность, выделяемая на микросхеме DA1, может превысить предельно допустимую.
МИКРОСХЕМЫ - СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ
МИКРОСХЕМЫ - СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ
Одним из важных узлов любой радиоэлектронной аппаратуры является стабилизатор напряжения питания. Еще совсем недавно такие узлы строились на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно значительным, особенно, если от него требовались функции регулировки выходного напряжения, защиты от перегрузки и короткого замыкания, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация изменилась. Современные микросхемы стабилизаторов напряжения выпускаются на широкий диапазон выходных напряжений и токов, они имеют встроенную защиту от перегрузки по току и от перегрева - при нагреве кристалла микросхемы свыше допустимой температуры она закрывается и ограничивает выходной ток. В табл. 2 приведен перечень наиболее распространенных на отечественном рынке микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их некоторые параметры, на рис. 92 - разводка выводов. Буквы хх в обозначении конкретной микросхемы заменяются на одну или две цифры, соответствующие напряжению стабилизации в вольтах, для микросхем серии КР142ЕН - на цифробуквенный индекс, указанный в таблице. Микросхемы зарубежных изготовителей серий 78хх, 79хх, 78Мхх, 79Мхх, 78Lxx, 79Lxx могут иметь различные префиксы (указывают фирму-изготовитель) и суффиксы, определяющие конструктивное оформление (оно может отличаться от приведенного на рис. 92) и температурный диапазон. Следует иметь ввиду, что сведения о рассеиваемой мощности при наличии теплоотвода в паспортных данных обычно не указаны, поэтому здесь даны некоторые усредненные величины из графиков, приведенных в документации. Отметим также, что для микросхем одной серии, но на разные напряжения, значения рассеиваемой мощности могут также отличаться друг от друга. Более подробные сведения о некоторых сериях отечественных микросхем можно найти в литературе [10 - 14]. Исчерпывающая информация по микросхемам для линейных источников питания опубликована в [15].
Типовая схема включения микросхем на фиксированное выходное напряжение приведена на рис. 93. Для всех микросхем емкость конденсатора С1 должна быть не менее 2,2 мкФ для керамических или танталовых и не менее 10 мкФ для алюминиевых оксидных
конденсаторов. Емкость конденсатора С2 должна быть не менее 1 и 10 мкФ для аналогичных типов конденсаторов соответственно. Для некоторых микросхем емкости могут быть и меньше, но указанные величины гарантируют устойчивую работу для любых микросхем. В каче стве С1 может использоваться сглаживающий конденсатор фильтра, если он расположен не далее 70 мм от микросхемы. В [15] можно найти множество схем включения для различных вариантов использования микросхем - для обеспечения большего выходного тока, подстройки выходного напряжения, введения других вариантов защиты, использования микросхем в качестве генератора тока. Если необходимы нестандартное напряжение стабилизации или плавная регулировка выходного напряжения, удобно использовать трехвыводные регулируемые микросхемы, поддерживающие напряжение 1,25 В между выходом и управляющим выводом. Их параметры приведены в табл. 3, а типовая схема включения для стабилизаторов положительного напряжения - на рис. 94.
Резисторы R1 и R2 образуют внешний регулируемый делитель, входящий в цепь установки выходного напряжения Uвых. которое определяется по формуле:
где Iпотр - собственный ток потребления микросхемы, составляющий 50...100 мкА. Число 1,25 в этой формуле - это упомянутое выше напряжение между выходом и управляющим выводом, которое поддерживает микросхема в режиме стабилизации. Следует иметь ввиду, что, в отличие от стабилизаторов на фиксированное выходное напряжение, регулируемые микросхемы
без нагрузки не работают. Минимальное значение выходного тока таких микросхем составляет 2,5... 5 мА для маломощных микросхем и 5...10 мА - для мощных. В большинстве применений для обеспечения необходимой нагрузки достаточно тока делителя R1R2. Принципиально по схеме рис. 94 можно включать и микросхемы с фиксированным выходным на пряжением, но их собственный ток потребления значительно больше (2...4 мА) и он менее стабилен при изменении выходного тока и входного напряжения. Для снижения уровня пульсаций, особенно при высоких выходных напряжениях, рекомендуется включать сглаживающий конденсатор С2 емкостью 10 мкФ и более.
К конденсаторам С1 и CЗ требования такие же, как и к соответствующим конденсаторам для микросхем с фиксированным выходным напряжением. Диод VD1 защищает микросхему при отсутствии входного напряжения и подключении ее выхода к источнику питания, например, при зарядке аккумуляторных батарей или от случайного замыкания входной цепи при заряженном конденсаторе СЗ. Диод VD2 служит для разрядки конденсатора С2 при замыкании выходной или входной цепи и при отсутствии С2 не нужен. Приведенные сведения служат для предварительного выбора микросхем, перед проектированием стабилизатора напряжения следует ознакомиться С полными справочными данными, хотя бы для того, чтобы точно знать максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, выходного тока или температуры. Можно отметить, что все параметры микросхем находятся на уровне, достаточном для подавляющего числа случаев применения в радиолюбительской практике. Заметных недостатков у описанных микросхем два - довольно высокое минимально необходимое напряжение между входом и выходом - 2...3 В и ограничения на максимальные параметры -входное напряжение, мощность рассеяния и выходной ток. Эти недостатки часто не играют роли и с лихвой окупаются простотой применения и низкой ценой микросхем. Несколько конструкций стабилизаторов напряжения с использованием описанных микросхем рассмотрено далее.
ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ДЛЯ ПИТАНИЯ ФЭУ
В этом разделе описан преобразователь напряжения, предназначенный для питания фотоэлектронного умножителя, входящего в состав чувствительного радиометрического комплекса. Схемотехнические решения, заложенные в преобразователе, могут быть использованы при разработке стабилизированных источников питания многих других электронных устройств.
Преобразователь, схема которого приведена на рис. 132, обеспечивает на выходе напряжение 1000 В. Стабильность выходного напряжения такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного напряжения не обнаружимо по четырехзнаковому цифровому вольтметру, т. е. не превышает 0,1 %.
Устройство собрано по традиционной схеме с использованием обратного выброса напряжения самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс напряжения около 250 В на вторичной обмотке (около 40 В - на первичной). Умножитель напряжения, образованный диодами VD3 -VD10 и конденсаторами С8 - С 15, повышает его до 1000 В.
Импульсы управления транзистором VT1 вырабатывает генератор с регулируемой скважностью, собранный на элементах DD1.1 -DD1.3. Управление скважностью импульсов осуществляется выходным напряжением операционного усилителя DA1,
Выходное напряжение преобразователя через резистивный делитель R1 - R3 поступает на неинвертирующий вход операционного усилителя и сравнивается им с образцовым напряжением, стабилизированным термокомпенсированным стабилитроном VD1. В момент включения выходное напряжение преобразователя равно нулю, близко к нулю и напряжение на выходе ОУ DA1. Генератор формирует импульсы максимальной длительности. При соотношении сопротивлений резисторов R9, Rll, R12, указанных на схеме,
отношение длительности импульсов положительной полярности на выходе элемента DD1.4 к периоду их повторения (коэффициент заполнения) близко к 0,65.
При достижении выходным напряжением заданного значения отрицательное напряжение на выходе ОУ DA1 возрастает, коэффициент заполнения уменьшается, а выходное напряжение стабилизируется. Во время испытания описываемого здесь преобразователя длительность импульсов при нагрузке в указанных выше пределах изменялась от 10 до 12 мкс, а их частота повторения - от 18 до 30 кГц, что соответствует коэффициенту заполнения от 0,18 до 0,4. Потребляемый ток увеличивался с 22 до 47 мА. При максимальной нагрузке и уменьшении питающего напряжения до 10,5 В длительность импульсов увеличивалась до 16 мкс при частоте 36 кГц, что соответствует коэффициенту заполнения 0,57. Дальнейшее снижение напряжения питания приводило к срыву стабилизации. При токе нагрузки 100 мкА стабилизация сохраняется до напряжения источника питания 9,5 В. Конденсатор С3 образует нижнее плечо емкостной части делителя выходного напряжения. Без него напряжение пульсации с выхода преобразователя, равное примерно 1 В, проходило бы на вход ОУ DA1 через емкость резисторов R1 и R2 практически без ослабления. Конденсатор С4 обеспечивает преобразователю устойчивость работы в целом. Диод VD2 и резистор R 12 ограничивают максимально возможный коэффициент заполнения. Минимальные длительность импульсов и коэффициент заполнения определяются соотношением сопротивлений резисторов R9 и R 11. С уменьшением сопротивления резистора R9 минимальный коэффициент заполнения уменьшается и может стать равным нулю. Стабильность выходного напряжения при различных нагрузках обеспечивается за счет большого коэффициента усиления в петле обратной связи преобразователя. Для устойчивости работы преобразователя при таком коэффициенте усиления необходим конденсатор С4 относительно большой емкости. Но это приводит к увеличению длительности установления выходного напряжения при скачкообразных изменениях нагрузки. Сократить время установления можно уменьшением емкости конденсатора С4, включением последовательно с ним резистора сопротивлением в несколько десятков килоом, подключением параллельно этому конденсатору резистора сопротивлением в несколько мегаом. Все детали преобразователя можно смонтировать на печатной плате, выполненной из одностороннего фольгированного стеклотекстолита.
Показанная на рис. 133 плата рассчитана в основном на установку резисторов МЛТ. Резисторы R1 - R3, R5 и R7, от которых зависит долговременная стабильность преобразователя, - стабильные С2-29. Подстроенный резистор R6 - СПЗ-19а. Конденсатор С1 -К53-1, С8 - С 15 - К73-17 на номинальное напряжение 400 В, другие конденсаторы - КМ-5, КМ-6. Выбор стабилитрона VD1 определяется предъявляемыми требованиями по стабильности. Диод VD2 - любой
кремниевый маломощный, а диоды умножителя напряжения (VD3 -VD10) могут быть КД104А. Микросхема К561ЛА7 заменима на К561ЛЕ5, КР1561ЛА7, КР1561ЛЕ5 или на аналогичные из серии 564. Транзистор VT1 должен быть высокочастотным или среднечастотным, с допустимым напряжением коллектор - эмиттер не менее 50 В и напряжением насыщения не более 0,5 В при токе коллектора 100 мА. Для ускорения выхода среднечастотного транзистора из насыщения при выключении емкость конденсатора С6 следует увеличить. Операционный усилитель К140УД6 (DA1) можно заменить на КР140УД6 без изменения рисунка печатных проводников платы или на любой другой с полевыми транзисторами на входе. Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К20 х 12 х 6 из феррита М1500НМЗ. Первичная обмотка содержит 35 витков, а вторичная - 220 витков провода ПЭЛШО 0,2. С целью уменьшения межобмоточной емкости провод вторичной обмотки следует укладывать одним толстым слоем, постепенно смещаясь по магнитопроводу, при этом первый и последний витки должны оказаться рядом. Первичная обмотка однослойная, ее наматывают поверх вторичной. Полярность подключения выводов обмоток роли не играет. Настраивать преобразователь следует в таком порядке. Отключить первичную обмотку трансформатора от транзистора, а верхний (по схеме) вывод резистора R3 соединить с минусовым выводом источника питания через два резистора с общим сопротивлением 140 кОм. При вращении движка подстроечного резистора R6 коэффициент заполнения импульсов на выходе элемента DD1.4 (контролировать осциллографом или вольтметром постоянного напряжения, включенным между выходом этого элемента и общим проводом) должен скачком изменяться от минимального (примерно 0,1 или импульсы могут исчезать полностью) до максимального (0,65).
Движок подстроечного резистора зафиксировать в положении возникновения этого скачка. Затем полностью смонтировать преобразователь, подключить к его выходу вольтметр с входным сопротивлением не менее 10 МОм и включить питание. Выходное напряжение можно контролировать таким же вольтметром и по напряжению на резисторе R3 (5 В) или микроамперметром, включенным последовательно с этим резистором (50 мкА). Далее подстроить резистором R6 выходное напряжение преобразователя и проверить стабильность его работы при изменении нагрузки и напряжения источника питания. Для уменьшения помех, излучаемых преобразователем, он по мещен в латунный корпус. При необходимости большего подавления помех во вторичную цепь преобразователя можно включить простейший RC-фильтр, а в первичную - дроссель ДМ-0,1 индуктивностью 400 мкГн и проходной конденсатор. Описанный преобразователь рассчитан на paботу отстабилированного источника питания 12 В, у которого с общим проводом соединен плюсовой вывод. Но без ка-
ких-либо изменений в монтаже с общим проводом можно соединить минусовый вывод источника питания. В порядке эксперимента испытан вариант этого преобразователя с питанием от двуполярного источника ±12 В. Основная его часть собрана по такой же схеме, конденсатор С1 (на номинальное напряжение 30 В), вдвое меньшей емкости, включен между цепями +12 и -12 В, нижние (по схеме) вывод резистора R14 и вывод первичной обмотки транс форматора Т1 подключены к цепи +12 В. Номиналы замененных элементов: R13 - 1,1 кОм, С6 - 1600 пФ, С7 - 430 пФ, R14 - 2 кОм. Транзистор VT1 - КТ815Г. Число витков первичной обмотки трансформатора Т1 увеличено в два раза. Если использовать нестабилизированный источник питания, то коэффициент стабилизации цепи R4VD1 может оказаться недостаточным. В этом случае цепь питания стабилитрона следует вьполнить по схеме, приведенной на рис. 134. Светодиод HL1 будет выполнять функцию индикатора включения питания.
СЕТЕВОЙ ИСТОЧНИК ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ
Во многих из описанных выше устройств использовались бестрансформаторные источники питания с гасящим конденсатором. Они удобны своей простотой, малыми габаритами и массой, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. О том, как правильно рассчитать такой источник, рассказывается в данном разделе.
В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Рассмотрим вначале работу источника с чисто резистивной нагрузкой (рис. 123,а).
В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последовательно с
диодным мостом, а нагрузка, зашунтированная другим конденсатором, питается от выходной диагонали моста (рис. 124). В этом случае цепь становится резко нелинейной и форма тока, протекающего через мост и гасящий конденсатор, будет отличаться от
синусоидальной. Из-за этого представленный выше расчет оказывается неверным.
Каковы процессы, происходящие в источнике со сглаживающим конденсатором С2 емкостью, достаточной для того, чтобы считать пульсации выходного напряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся режиме представляет собой некий эквивалент симметричного стабилитрона. При напряжении на этом эквиваленте, меньшем некоторого значения (оно практически равно напряжению Uвых на конденсаторе С2), мост закрыт и ток через него не проходит, при большем - через открытый мост течет ток, не давая увеличиваться напряжению на входе моста.
Рассмотрение начнем с момента t1, когда напряжение сети максимально (рис. 125). Конденсатор С1 заряжен до амплитудного напряжения сети Uс.амп за вычетом напряжения на диодном мосте Uм , примерно равного Uвых. Ток через конденсатор С1 и закрытый мост равен нулю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меняется.
Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2).
В этот момент появится скачком ток Ic1 через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не меняется, а ток определяется скоростью изменения напряжения сети и, следовательно, будет точно таким же, как если бы к сети был подключен только конденсатор С1 (график 3). Когда напряжение сети достигнет отрицательного амплитудного значения (момент tз), ток через конденсатор С1 снова станет равным нулю. Далее процесс повторяется каждый полупериод. Ток через мост протекает лишь в интервале времени t2-t3, его среднее значение может быть рассчитано как площадь заштрихованной части
При отсутствии стабилитрона на необходимое напряжение Uвых; допускающего рассчитанный максимальный ток стабилизации, можно соединить несколько стабилитронов на меньшее напряжение последовательно. Подставлять в формулу (4) минимальный ток нагрузки Iн nun следует лишь тогда, когда этот ток длителен - единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секунды) его надо заменить средним (по времени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использовать гасящий конденсатор несколько
источника по схеме рис. 124 зарядка этого конденсатора длится четверть периода напряжения сети, и столько же - разрядка. При таком приближении двойное напряжение пульсации 2Uп (размах ) равно: 2ип=0,25Iн mах/fС. Аналогично можно считать, что для источника по схеме рис. 126 зарядка длится то же время, а разрядка - три четверти периода: 2Uп=0,75Iнmax/fC. Для выходного напряжения менее 100 В реально зарядка длится большее время, разрядка - меньшее, и эти выражения дают заметно завышенный результат, поэтому расчет емкости сглаживающего конденсатора по полученным из них формулам обеспечивает некоторый запас: С=5Iнmax/2Uп (для рис. 124); С= 15Iнmax/2Uп (для рис. 126), где ток - в миллиамперах, емкость - в микрофарадах, напряжение - в вольтах. Хотя стабилитрон и уменьшает напряжение пульсации, использовать сглаживающий конденсатор емкостью, менее рассчитанной, не рекомендуется.
В ранее рассмотренном примере при размахе пульсации 0,2 В емкость сглаживающего конденсатора равна: С2=5*15/0,2=375 мкФ. Для ограничения броска тока через диоды выпрямительного моста в момент включения источника в сеть последовательно с гасящим конденсатором необходимо включать токоограничивающий резистор. Чем меньше сопротивление этого резистора, тем меньше потери в нем. Для диодного моста КЦ407А или моста из диодов КД103А достаточно резистора сопротивлением 36 Ом. Рассеиваемую на нем среднюю мощность Р можно определить по формуле: Р= 5,6С1^2R, где емкость - в микрофарадах, сопротивление -в омах, мощность - в милливаттах. Для рассмотренного выше примера P=5,6*0,39^236=30 мВт. Для надежности (ведь в момент включения к резистору может быть приложено амплитудное напряжение сети) рекомендуется использовать резистор мощностью не менее 0,5 Вт. Для того, чтобы исключить возможность поражения электротоком при налаживании устройств с рассматриваемыми источниками, питать их следует не от сети, а от сетевого лабораторного низковольтного блока питания через токоограничительный резистор. Выходное напряжение лабораторного блока устанавливают больше напряжения питания налаживаемого устройства настолько, чтобы ток через токоограничительный резистор был близок к Iст min+ Iнmax. Иногда удобно использовать в роли токоограничительного резистор источника, ограничивающий бросок тока через диоды выпрямительного моста. В этом случае достаточно замкнуть выводы
(рис. 130) на ток нагрузки до 0,3 А и источник бесперебойного питания для электронно-механических часов (рис. 131). Делитель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкф. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=O) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки - 27 В. Электронно-механические часы обычно питают от одного гальва нического элемента напряжением 1,5 В.
Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В. Транзистор VT1, включенный эмиттерным повторителем, и гальванический элемент G1 составляют стабилизатор напряжения. На выходе источника будет напряжение элемента минус падение напряжения на эмиттерном переходе транзистора. Ток, потребляемый от элемента G1 при наличии сетевого напряжения, меньше тока нагрузки в h21э раз, что существенно продлевает срок службы элемента. Практически это означает, что элемент приходится заменять не из-за его разрядки током нагрузки, а вследствие других причин - саморазрядки, высыхания электролита и т. п. В случае пропадания напряжения в сети транзистор выходит из режима эмиттерного повторителя и нагрузку питает гальванический .элемент G1 через открытый эмиттерный переход. После появления сетевого напряжения транзистор возвращается в режим эмиттерного повторителя и нагрузка переходит на питание от сети. Конденсатор С4 обеспечивает нормальную работу часов при глубокой разрядке элемента G1. Диоды Д223 можно заменить на любые другие, транзистор МП41А - на любой германиевый структуры р-n-р. Элемент G1 лучше использовать алкалиновый, например, Duracell, Energizer. Реальный срок эксплуатации такого элемента в блоке питания может достигать 10 лет. И последнее. Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.
СЕТЕВЫЕ АДАПТЕРЫ
В магазинах, киосках подземных переходов, на радиорынках можно купить так называемые адаптеры, оформленные в виде большой сетевой вилки. Независимо от названия фирмы они, как правило, китайского производства. Адаптеры бывают двух видов -"универсальные" и специализированные. Универсальный адаптер
(рис. 99) содержит понижающий трансформатор Т1 с большим числом отводов вторичной обмотки, переключатель SA1, выпрямительный мост, обычно из диодов 1N4001 (50 В, 1 А), сглаживающий конденсатор С1, индикатор включения в сеть - светодиод HL1 с ограничительным резистором R1, переключатель полярности выходного напряжения SA2 и набор выходных разъемов на конце кабе-
ля (условно показан только один - Х2). Число положений переключателя может быть меньшим, может отсутствовать индикатор включения в сеть. Специализированные адаптеры не имеют отводов вторичной обмотки, переключателя полярности. выходной разъем.
только один, как правило, нет индикатора включения.
Надписи на адаптерах обещают очень хорошие характеристики, не подтверждающиеся, однако, на практике. На рис. 100 - 104 приведены зависимости выходного напряжения и напряжения пульсации от выходного тока при напряжении сети 205 В для семи типов адаптеров, перечисленных в табл. 4. Выходные напряжения и токи в таблице указаны в соответствии с надписями на корпусе.
Какие выводы можно сделать из изучения этих характеристик? Во-первых, заявленные значения выходных напряжений обеспечиваются при выходных токах, значительно меньших, чем указано на корпусе - в два раза и более. Минимальное напряжение (1,5 и 3 В) адаптеры фирмы "FIRST" выдают при токах, составляющих 5% от приведенных на корпусе. Во-вторых, при токе, соответствующем максимальному, выходные напряжения падают в полтора-два раза (и более для малых выходных напряжений) относительно указанного.
Характеристику универсального адаптера SLD MW108 удалось снять только для положения переключателя выходного напряжения "12 В" (рис. 103). Во время измере-
ний трансформатор разогрелся до такой степени, что начала плавиться изолирующая пленка, намотанная поверх обмоток (и это при снятой верхней половине корпуса).В то же время при подаче на первичную обмотку напряжения 150 В трансформатор без нагрузки практически не нагревался.
Это говорит о том, что трансформатор рассчитан неправильно (если он вообще кем-то был рассчитан). Кроме того, уменьшение выходного напряжения при увеличении тока весьма велико, что говорит о большом сопротивлении обмоток трансформатора. Лучшими параметрами, прежде всего наименьшим выходным сопротивлением, обладал адаптер PPI-1280-TUV. Им комплектовались активные громкоговорители для IBM PC. Адаптеры RW-900 и 28, по утверждению продавца, подходили только для приставок "Dendy". Их
выходное сопротивление существенно больше. Из сравнения этих трех близких по заявленным характеристикам устройств можно сделать достаточно однозначный и очевидный вывод - чем больше масса адаптера, тем меньше его выходное сопротивление. На рис. 103 приведена также характеристика для "адаптера", собранного из стандартного трансформатора ТПП211 [16] с включенными последовательно вторичными обмотками и диодного моста с конденсатором 1000 мкФ от одного из адаптеров. Выходное сопротивление его существенно меньше, чем у RW-900 или *28, но и масса намного больше. При использовании адаптеров надо иметь ввиду, что приведенные на рис. 100 - 104 графики иллюстрируют зависимости для среднего
выходного напряжения. Реально на него наложено напряжение пульсации, причем его форма при малых токах близка к пилообразной. На рис. 104 приведены зависимости двойной амплитуды пульсации (от пика до пика) от выходного тока для части испытанных устройств. Для адаптеров фирмы "FIRST" приведены зависимости для двух положений переключателя SA1 - верхняя кривая соответствует положению "12", нижняя - "б". Как видно из этих графиков, зависимость амплитуды пульсации от тока определяется в основном емкостью конденсатора фильтра. Даже при токах, составляющих всего 10% от максимальной величины, напряжение пульсации имеет величину порядка 0,5 В, что слишком много для питания какой-либо радиоэлектронной аппаратуры. Поэтому использовать адаптеры без многократного увеличения емкости фильтрующего конденсатора или без стабилизаторов напряжения практически нельзя.
Наиболее просто в качестве стабилизатора на фикси рованное напряжение с "круглым" значением использовать микросхемы КР142ЕН5 и КР142ЕН8 с соответствующими буквенными индексами. Если требуемое выходное напряжение не является "круглым", можно использовать микросхему КР142ЕН12А(Б). Определить пригодность того или иного адаптера для построения блока питания можно следующим образом. При необходимом выходном токе (лучше, если он не превышает половины предельного для данного адаптера) напряжение на выходе адаптера при минимальном напряжении сети должно превышать выходное на половину напряжения пульсации плюс минимально допустимое напряжение вход-выход используемой микросхемы (около 2...2,5 В). В качестве примера на рис. 105 приведена схема заряднопитающего устройства для портативного радиоприемника на микросхеме К174ХА10, в котором установлены четыре аккумулятора ЦНК-0,45. Выходное напряжение 5,6 В устанавливается подстроечным резистором R3, а максимальный ток зарядки (примерно 150 мА) - подборкой резистора R1 при подключении к выходу блока разряженной аккумуляторной батареи. Конденсатор С1 устраняет высокочастотные помехи, возникающие в момент закрывания диодов выпрямительного моста. Блок удобен тем, что зарядка аккумуляторов происходит быстро (4...6 ч), и перезарядить аккумуляторы невозможно. Блок собран на основе адаптера RW-900. Чертеж печатной платы приведен на рис. 106. Использованы резисторы МЛТ, они установлены на плате вертикально, R3 - типа СПЗ-19а. Конденсатор С2 и диоды VD1 - VD4 - от адаптера,
остальные конденсаторы - КМ-6. В качестве С4 можно установить любой оксидный емкостью не менее 10 мкФ. На месте VD5 можно использовать практически любой выпрямительный или импульсный диод.
Микросхема DAl установлена на ребристый теплоотвод размерами 10 х 18 х 38 мм от промышленного устройства. Для хорошего охлаждения теплоотвода и трансформатора в нижней и верхней стенках корпуса адаптера (ориентация при включении его в настенную розетку) просверлены по шесть отверстий диаметром 6 мм. Если ограничивать выходной ток не требуется, резистор R1 и конденсатор СЗ можно исключить.
В таком варианте максимальный выходной ток изготовленного блока питания составлял 0,5 А при напряжении пульсации около 1 мВ. По приведенной схеме, подобрав сопротивления резисторов R3 и R4. можно изготовить блок на любое выходное напряжение в пределах, допустимых трансформатором адаптера. Используя универсальный адаптер, можно изготовить стабилизированный блок питания с переключаемым выходным напряжением. Схема доработанного адаптера FIRST ITEM N0:57 приведена на рис. 107. Вторичная обмотка трансформатора Т1 использована полностью, ее отводы заизолированы. Включение микросхемы DAl стандартное, назначение диодов VD5 и VD6 такое же, как и в предыдущей конструкции. Диоды VD1 - VD4, конденсатор С2, светодиод HL1 и переключатели SA1 и SA2 использованы от адаптера. Резисторы R3 - R8 не обязательно должны иметь указанные сопротивления, они могут отличаться в любую сторону в 1,5 раза. Важно, чтобы сопротивления R3 - R7 были равны между собой с точностью 1...2 %, а сопротивление R8 было вдвое большим, поскольку ими определяется погрешность установки выходных напряжений. Все элементы устройства, кроме трансформатора Т1, установлены на печатной плате (рис. 108). Для сверления крепежных отверстий
и отверстий для установки переключателей и светодиода удобно применить в качестве трафарета печатную плату от используемого адаптера. Для того, чтобы выпаять переключатель из платы и при этом не повредить ее, надо, прогревая паяльником одновременно несколько соседних контактов, изгибать плату. Переходя постепенно к другим контактам, можно выпаять переключатель целиком. Микросхема DAl установлена на медную пластину размерами 52 х 38 мм и толщиной 1 мм, выполняющую роль теплоотвода. Она имеет отогнутый край для крепления на плате, а по ее периметру просверлены отверстия диаметром 4 мм для обеспечения вентиляции корпуса. Для тех же целей в верхней и нижней стенках корпуса просверлено по восемь отверстий диаметром 6 мм. Настройка адаптера заключается в установке выходных напряжений без нагрузки подборкой резисторов R2 и R9.
Можно сразу поставить резистор R9 указанного на схеме сопротивления, а параллельно ему и вместо R2 впаять переменные резисторы сопротивлением 10 кОм и 56 Ом соответственно. Подстройкой резистора, подключенного параллельно R9, устанавливают выходное напряжение 12 В, резистором R2 - 1,5 В. Поскольку эти установки взаимосвязаны, их надо повторить несколько раз. После этого устанавливают постоянные резисторы с подобранными сопротивлениями, причем резистор параллельно R9 подпаивают со стороны печатных проводников. Изготовленный экземпляр стабилизированного адаптера обеспечивал выходной ток до 200 мА. При напряжении 12 В ток ограничен появлением пульсации, при меньших - нагревом микросхемы DAl. Увеличением поверхности теплоотвода можно суще-
ственно увеличить выходной ток при малых выходных напряжениях. Нередко многие импортные радиоэлектронные устройства комплектуются адаптерами, рассчитанными на подключение к сети 120 В. Использовать такие адаптеры можно, включая их, по крайней мере, четырьмя способами (рис. 109). Самый простой, но обладающий наименьшим КПД, вариант - рис. 109,а. Сопротивление резистора R1 можно рассчитать, а можно и подобрать, что проще. Для иллюстрации методики подбора рассмотрим различные варианты включения на примере адаптера Panasonic KX-A09, которым комплектуются бесшнуровые телефоны КХ-ТС910-В. На корпусе адаптера указано, что его входное напряжение 120 В при частоте 60 Гц. Выходные параметры -12 В 200 мА постоянного тока. Потребляемая от сети мощность составляет 6 Вт. На частоте 50 Гц входное напряжение должно быть снижено примерно до 105 В (почти пропорционально снижению частоты). Поэтому от адаптера уже нельзя получить полное паспортное выходное напряжение, и скорее всего, его нельзя будет использовать для питания того устройства, в комплект которого он входил. Если же на адаптере указана рабочая частота сети 50...60 Гц, его, естественно, можно будет применить по назначению. На рис. 110 приведена зависимость выходного напряжения рассматриваемого адаптера от выходного тока при входном напряжении 105 В (кривая 1).
Оно изменяется от 15,2 В при нулевом токе нагрузки до 10,5 В при 200 мА. Поэтому для получения сопоставимых результатов все элементы схем рис. 109 в дальнейшем подбирались так, чтобы обеспечить выходное напряжение 11,8 В при выходном токе 120 мА (одна из точек графика рис. 110,а, сопротивление нагрузки 98 Ом). Для подбора резистора в схеме рис. 109,а вначале следует оценить его необходимую величину по приближенной формуле R1 =U^2/P, где U - напряжение на этом резисторе (120 В), Р - рассеиваемая им мощность, примерно равная потребляемой адаптером. Для данного случая R1 = 120^2/6 =2400 Ом. На всякий случай следует взять вначале резистор с полуторакратным запасом по сопротивлению. Далее, подключив необходимую нагрузку (98 Ом) и постепенно уменьшая сопротивление R1, добиться необходимого напряжения на выходе
адаптера. Лучше, конечно, использовать проволочный переменный резистор на соответствующую мощность. В данном примере для получения необходимого выходного напряжения потребовался резистор сопротивлением 24400м. Хорошее совпадение с расчетной величи- ной - случайность, поскольку формула не учитывает индуктивной составляющей сопротивления первичной обмотки трансформатора адаптера, а значение потребляемой мощности задано также весьма приближенно. Для такого сопротивления резистора R1 была снята зависимость выходного напряжения от тока нагрузки (рис. 110, кривая 2). Видно, что напряжение падает с увеличением тока более резко - с 22,5 до 9 В. Для уменьшения потерь параллельно первичной обмотке трансформатора адаптера был подключен конденсатор, емкость которого подбиралась для обеспечения резонанса. На рис. 111 приведена зависимость напряжения на нагрузке от емкости конденсатора. Резонанс хотя и заметен, но его роль ничтожна - подъем напряжения составляет около 1,5%. Для сохранения выходного напряжения на заданном уровне при емкости С1=0,44 мкФ сопротивление резистора R1 было увеличено до 2570 Ом.
Нагрузочная характеристика адаптера (рис. 110, кривая 3) мало отличалась от кривой 2. Вполне естественно заменить резистор R1 на конденсатор.
При сохранении С1=0, 44 мкФ емкость конденсатора С2 потребовалась равной 0,54 мкФ. Нагрузочная кривая для этого случая менее крута (кривая 4 на рис.
110), напряжение изменяется от 20,3. до 9,5 В. В еще большей степени уменьшить зависимость выходного напряжения от тока можно, увеличив емкости конденсаторов С1 и С2. Для примера при произвольно выбранной емкости С1=1 мкФ подобранная для обеспечения заданно- го напряжения емкость конденсатора С2 составила 0,67 мкФ, при этом выходное напряжение в зависимости от тока изменяется от 18,3 до 9,8 В (кривая 5 на рис. 110). С другой стороны, если стабильность выходного напряжения при изменении тока нагрузки не принципиальна или ток нагрузки практически не меняется, можно исключить конденсатор С1 (рис. 109,г, кривая 6 на рис. 110). Подбор емкости можно начать с величины, определенной по полуэмпирической формуле С2=Р/12. где Р - мощность в ваттах, емкость - в микрофарадах. Формула учитывает запас, обеспечивающий исключение перегрузки адаптера. Для данного случая начальное значение емкости С2= 6/12 =0,5 мкФ. При подобранной емкости С2=0,76 мкФ и изменении выходного тока от 0 до 200 мА выходное напряжение меняется от 27 до 8,9 В. Таким образом, если необходима стабильность выходного напряжения при изменении тока нагрузки, наиболее целесообразно использование емкостного делителя, причем емкости устанавливаемых конденсаторов сверху практически не ограничены - чем больше, тем лучше. Если стабильность не играет роли - используйте вариант с одним конденсатором С2 (рис. 109,г). Варианты с гасящим резистором (рис. 109,а и б) применять нецелесообразно из-за больших потерь мощности и сильного нагрева этого резистора. Приведенные на рис. 110 графики иллюстрируют зависимости для среднего выходного напряжения. На него наложено напряжение пульсации, его форма близка к пилообразной. На рис. 112 приведены зависимости двойной амплитуды пульсации (от пика до пика) от выходного тока для первого (от напряжения 105 В, кривая 1) и последнего (через единственный конденсатор С2, кривая 2) из рассмотренных вариантов подключения адаптера.Для других вариантов включения пульсации имеют промежуточную величину. Для вариантов рис. 109,в и г параллельно конденсатору С2 следует включать резистор сопротивлением несколько сотен килоом для его разрядки после отключения от сети. В варианте 1,в весьма желателен резистор сопротивлением 22...47 Ом, включенный последовательно с конденсатором С2. Он уменьшит бросок тока в момент включения в сеть. Рабочее напряжение конденсаторов должно быть не менее 250 В, очень удобны К73-16 и К73-17. При всех экспериментах с адаптерами следует помнить, что рабочее напряжение устанавливаемых в них оксидных конденсаторов обычно составляет, как правило, 16 В и поэтому нежелательна подача на них большего напряжения на сколько-нибудь длительное время.
ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ НИКЕЛЬ-КАДМИЕВЫХ АККУМУЛЯТОРОВ И БАТАРЕЙ
В специализированной литературе обоснована целесообразность зарядки аккумуляторов от источника фиксированного напряжения с ограничением тока. Такой режим удобен тем, что подзарядка в течение, например, ночи гарантирует к утру их полную зарядку независимо от их исходного состояния без опасности перезарядки. В данном разделе описаны несколько вариантов подобных устройств для зарядки никель-кадмиевых аккумуляторов и батарей.
Схема первого из предлагаемых зарядных устройств приведена на рис. 113. Стабилитрон VD6, операционный усилитель DA1.1, транзистор VT1 и связанные непосредственно с ними элементы образуют высокостабильный источник напряжения. Его особенность - питание параметрического стабилизатора R2VD6 выходным напряжением источника, что и обеспечивает ему высокие параметры.
Делитель R 17 - R28 формирует 12 ступеней напряжения, соответствующих предельным при зарядке одиночных аккумуляторов и батарей, составленных из 2 - 12 никель-кадмиевых аккумуляторов. Необходимое зарядное напряжение выбирают переключателем SA2. Операционный усилитель (ОУ) DA1.2 совместно с транзистором VT2 образуют точный повторитель этого напряжения с большой нагрузочной способностью. Его выходное сопротивление весьма мало -изменение напряжения при увеличении выходного тока от 0 до 350 мА нельзя обнаружить по четырехзначному цифровому вольтметру, т. е. оно меньше 1 мВ, а выходное сопротивление соответственно менее 0,003 Ом.
Для ограничения тока в начале зарядки используется сравнение падения напряжения на резисторе R32 (и подключаемых к нему параллельно резисторах R6 - R 16) и образцового напряжения, снимаемого с делителя R35 - R39. Ток коллектора транзистора VT2 с достаточной точностью равен току зарядки. Образцовое напряжение, снимаемое с резисторов R35 и R36, равно 1,2 В. Сравнение напряжений осуществляет компаратор, его функцию выполняет ОУ DA2.2. Когда ток зарядки создает на резисторе R32 падение напряжения более 1,2 В, ОУ DA2.2 открывает транзистор VT3, который своим коллекторным током увеличивает напряжение на инвертирующем входе ОУ DA1.2, что приводит к уменьшению выходного напряжения ОУ и переходу всего источника в режим стабилизации тока.
Установку значения тока ограничения в пределах от 2, 5 до 350 мА производят переключателем SA3. Выходное сопротивление устройства в режиме стабилизации тока равно сопротивлению резистора R30:
Микроамперметр РА1 с добавочным резистором R31 образует вольтметр на напряжение 1,2 В, поэтому при работе источника в режиме стабилизации тока его стрелка указывает на последнее деление шкалы. Для вольтметра использован микроамперметр на ток 100 мкА, поэтому такое его показание соответствует зарядному току, равному 100% от установленного переключателем SA3 значения. Если к гнездам XI и Х2 зарядного устройства подключить разряженную батарею аккумуляторов, установив переключатель SA2 в положение, соответствующее их числу в ней, вначале ток зарядки будет определяться положением переключателя SA3. Через несколько часов напряжение на батарее достигнет значения, установленного переключателем SA2, и устройство перейдет в режим стабилизации напряжения. Ток зарядки начнет уменьшаться, что можно отслеживать по показанию прибора РА1. Когда ток уменьшится до значения, составляющего примерно 5% от установленного переключателем SA3, компаратор на ОУ DA2.1 переключится и загорится светодиод HL2, сигнализируя об окончании зарядки. Если батарею (или одиночный аккумулятор) продолжать заряжать даже в течение суток, с ней ничего не произойдет, поскольку ток в конце зарядки весьма мал. Светодиод HL1 - индикатор подключения устройства к сети. Подбором конденсатора С7 устраняют высокочастотную генерацию ОУ DA1.2. Какова роль диодов VD2 - VD5? При зарядке одиночного аккумулятора напряжение на неинвертирующем входе ОУ DA1.2 составляет 1,4 В, а в режиме замыкания выхода зарядного устройства его выходное напряжение, обеспечивающее перевод устройства в режим стабилизации тока, должно быть около 0,6 В относительно общего провода. Чтобы ОУ DA1.2 нормально работал в таких режимах, напряжение его минусового источника питания должно быть по абсолютному значению не менее 2 В, что и обеспечивается падением напряжения на диодах VD3 - VD5. Аналогично для нормальной работы ОУ DA2.1 при напряжении на входах, близком к напряжению плюсового источника питания, разность между ними должна быть не менее 0,6 В - обеспечивается падением напряжения на диоде VD2. Чертеж печатной платы из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм, на которой размещена большая часть деталей устройства, приведен на рис. 114.
Транзистор VT2 снабжен игольчатым теплоотводом размерами 60 х 45 мм, высота игл - 20 мм. Переключатели SA2 и SA3 вместе с распаянными на них
резисторами, микроамперметр РА1, светодиоды HL1 и HL2, выходные гнезда XI и Х2 установлены на передней панели прибора, изготовленной из стеклотекстолита толщиной 1,5 мм, а трансформатор Т1, выключатель SA1, предохранитель FU1, диодный мост VD1 и конденсаторы С1 - на задней дюралюминиевой панели такой же толщины. Панели скреплены между собой дюралюминиевыми стяжками длиной 135 мм, к этим же стяжкам привинчена печатная плата. Законченная конструкция установлена в алюминиевый корпус в виде отрезка прямоугольной трубы. Сетевой трансформатор Т1 - унифицированный ТН-30 [17]. Но применим любой другой аналогичный трансформатор, вторичная обмотка которого обеспечивает напряжение 19...20 В при токе не менее 400 мА. Выпрямительный мост VD1, рассчитанный на такой же выходной ток, можно собрать из четырех диодов с рабочим током 300 мА, например, серии Д226. Такими могут быть и диоды VD2 -VD5. Конденсатор С1 составлен из трех соединенных параллельно оксидных конденсаторов К50-29 емкостью по 1000 мкФ на номинальное напряжение 25 В. Конденсатор С2 - К53-1, остальные - КМ-5 и КМ-6. Термокомпенсированный стабилитрон КС191Ф (VD6) можно заменить на Д818 с буквенными индексами В - Е или на КС 191 с любым буквенным индексом. Резисторы R3, R5 и R17 - R28 желательно использовать стабильные, например, С2-29. Сопротивления резисторов R17 - R28 могут быть в пределах 160 Ом...10 кОм, но обязательно одинакового значения с точностью не хуже 0,3%. Сопротивления резисторов R6 - R 16 не обязательно должны быть точными. Их желательно подобрать в соответствии с указанными на схеме значениями из резисторов близких номиналов, что упростит настройку прибора. Каждый из резисторов R 15, R 16 состоит из нескольких резисторов большего номинала и меньшей мощности рассеяния, которые соединены параллельно. Подстроечные резисторы R4 и R38 - СПЗ-19а. Светодиоды HL1 и HL2 - любые, но желательно разного цвета свечения.
Стабилитроны VD7 и VD8 на напряжение стабилизации 5,6...7,5 В. Переключатели SA2 и SA3 - ПГ2-5-12П1Н или аналогичные другие малогабаритные. Микроамперметр РА1 типа М4247 на ток 100 мкА. Используя прибор на иной ток полного отклонения стрелки, придется подбирать не только ограничительный резистор R31, но и R32 - для обеспечения зарядного тока 2,5 мА при крайнем левом (по схеме) положении переключателя SA3. Транзисторы VT1, VT2 могут быть любыми кремниевыми структуры n-р-n средней мощности, a VT3 - любым кремниевым маломощным структуры р-n-р на допустимое напряжение не менее ЗОВ. Операционные усилители К140УД20 (DA1, DA2) заменимы двойным числом ОУ К140УД7. Применение ОУ других типов определяется возможностью их работы в упомянутых выше режимах, но автором это не проверялось. Коротко о настройке зарядного устройства. Вначале подстроечным резистором R4 установите на эмиттере транзистора VT1 напряжение, равное 16,8 В. Нагрузив устройство резистором сопротивлением 51...68 Ом (на мощность рассеяния 7,5 Вт) и временно отпаяв резистор R43, убедитесь в том, что при переводе переключателя SA2 в каждое следующее положение (вверх по схеме) выходное напряжение увеличивается на 1,4 В. Проверьте отсутствие высокочастотной генерации на выходе и при необходимости подберите конденсатор С7. Далее восстановите соединение резистора R43, а переключатель SA2 установите в положение "12". Изменяя положение переключателя SA3, убедитесь, что при этом выходной ток, измеряемый миллиамперметром, включенным последовательно с нагрузочным резистором, ограничивается значением, соответствующим положению этого переключателя (кроме 350 мА). Замените нагрузочный резистор цепочкой из двух - трех диодов (однотипных с VD2 - VD5) и, установив переключатель SA3 в положение "100 мА", выставьте подстроечным резистором R38 такой же выходной ток. Стрелка микроамперметра должна указывать на последнее деление шкалы, если это не так - подберите резистор R31. Теперь переключатель SA2 установите в положение "1", а переключатель SA3 в положение "10 мА".
К выходу устройства подключите переменный резистор на 3,3 кОм и миллиамперметр, после чего увеличивайте от нуля сопротивление этого резистора. При выходном токе, равном примерно 0,5 мА, должен включиться светодиод HL2. Настраивая устройство, помните, что его выходное сопротивление резко несимметрично - оно мало для вытекающего тока и велико для втекающего. Поэтому устройство без нагрузки чувствительно к сетевым наводкам и измерение выходного напряжения высокоомным вольтметром может дать неожиданно завышенный результат. Зарядка батареи аккумуляторов несложна. Надо лишь установить переключатели в положения, соответствующие числу аккумуляторов в ней и максимальному току зарядки, подключить к выходу батарею с соблюдением полярности и включить питание устройства. Признаком окончания зарядки служит загорание светодиода HL2. Максимальный ток зарядки должен быть в 3...4 раза меньше емкости заряжаемой батареи аккумуляторов. Какие дополнения или изменения можно внести в этот вариант зарядного устройства? Прежде всего надо дополнить его электро-
магнитным реле К1, как показано на рис. 115, которое бы отключало аккумулятор или батарею после окончания зарядки. При включении светодиода HL2 реле срабатывает и своими нормально замкнутыми контактами разрывает цепь зарядки. Резистор R44 необходим для четкого срабатывания реле и обеспечения небольшого гистерезиса компаратора на ОУ DA2.1. Реле К1 должно быть на напряжение 20...27 В, транзистор VT4 -любой средней или большой мощности структуры р-n-р, например, серий КТ502, КТ814, КТ816. Но введя в устройство такое дополнение, следует учитывать, что после начала зарядки любые переключения его цепей приводят к срабатыванию реле, поэтому необходимые установки надо делать заранее. Устройство можно применять для разрядки батарей из семи аккумуляторов, не опасаясь их переразрядки. Для этого переключатель SA2 надо установить в положение "5", переключатель SA3 - в ближайшее по току разрядки, но большее его, включить между выходными гнездами XI и Х2 резистор, обеспечивающий необходимый ток разрядки и подключить разряжаемую батарею.
Поскольку напряжение батареи больше, чем подаваемое на неинвертирующий вход ОУ DA1.2, транзистор VT2 будет закрыт, а батарея разряжаться через резистор. Когда напряжение батареи снизится до 7 В, ОУ DA1.2 и транзистор VT1 перейдут в режим стабилизации напряжения, разрядка прекратится. Индикатором завершения разрядки батареи служит светодиод HL2 - в процессе разрядки он светится, а по ее окончании - гаснет. Если устройство часто предполагается использовать для разрядки батарей, к тому же с разным числом аккумуляторов, в него целесообразно ввести дополнительный резистор, сопротивление которого составляет 40% от суммарного сопротивления резисторов R17 - R28, и, конечно, выключатель. Резистор включают между выходом источника образцового напряжения (на схеме рис. 113 -точка соединения эмиттера транзистора VT1, резисторов R2, R3, конденсатора СЗ) и неподвижным контактом "12" переключателя SA2, соединенным с резистором R17, а параллельно этому резистору - дополнительный выключатель. Батарею заряжают при замкнутых контактах выключателя, а при размыкании их, когда выходное напряжение уменьшается в 1,4 раза (до 1 В на аккумулятор),батарею можно разряжать. Разрядка батареи через резистор происходит изменяющимся во времени током, который можно стабилизировать микросхемой К142ЕН12А, включив ее по схеме, приведенной на рис. 116. Сопротивление резистора R46 (Ом) определяют по формуле: R46=1250/Ipaз, где Iраз - ток разрядки (мА). Номиналы резисторов, от которых зависит ток разрядки, соответствуют сопротивлениям резисторов R6 - R 16 при тех же токах, что и ток зарядки.
Схема второго варианта зарядного устройства показана на рис. 117. Оно значительно проще, но в нем нет узла индикации момента окончания зарядки. В устройстве применены две микросхемы КР142ЕН12А. Первая из них (DA1) работает в режиме ограничения тока, а вторая выполняет функцию стабилизатора напряжения зарядки. Диоды VD2-VD4 являются элементами защиты. Подстроечными резисторами R25 и R28 точно устанавливают выходные напряжения при различных положениях переключателя SA3.
Конденсаторы С2- С4 предотвращают возможную генерацию микросхем DA1, DA2. Трансформатор питания Т1, диодный мост VD1, конденсатор С1, переключатели SA2 и SA3 могут быть такими же, как в первом варианте устройства. Диоды VD2-VD4 - любые маломощные кремниевые. Резисторы R13-R24, R26 должны быть точными и стабильными, а их сопротивления - в пределах 120...180 Ом. Перед установкой микросхем на плате желательно проверить их напряжение стабилизации. Сделать это можно, подключив цепь, выполненную по схеме рис. 116, к источнику напряжения 5...15 В, измеряя напряжение на резисторе R46 (160 Ом). Ту из микросхем, напряжение стабилизации которой ближе к 1,2 В, используйте в узле ограничения тока зарядки (DA1). А если оно сильно отличается от 1,2 В, сопротивления резисторов R2-R12 придется подобрать при настройке устройства. Настраивайте это зарядное устройство следующим образом. Вначале переключатели SA2 и SA3 установите в положения "350" и
"12" соответственно, движок подстроенного резистора R25 - в среднее положение, после чего резистором R27 выставите на выходе напряжение 16,8 В. Далее переключатель SA3 переведите в положение "1" и резистором R25 установите на выходе устройства напряжение 1,4 В. Эти операции взаимосвязаны, поэтому повторите их несколько раз. Затем к выходу подключите три соединенных последовательно кремниевых диода на ток не менее 300 мА и миллиамперметр. Переключатели SA2 и SA3 установите в положения "2,5" и "2" и подбором резистора R1 добейтесь выходного тока, равного 2,5 мА. Если напряжение стабилизации микросхемы DA1 1,2 В и сопротивления резисторов R2-R12 соответствуют указанным на схеме, то и при других положениях переключателей токи зарядки должны соответствовать обозначенным на схеме. В противном случае придется дополнительно подбирать резисторы R2-R12. Выходное сопротивление устройства в режиме стабилизации тока значительно меньше, чем у конструкции первого варианта, и равно суммарному сопротивлению введенных резисторов R13-R24 и R25-R28. Если зарядное устройство по схеме на рис. 117 предназначается лишь для батарей из аккумуляторов одного типа, переключатель SA2 и резисторы R2-R12 можно исключить, а индикатор окончания зарядки, собранный по схеме рис. 118, ввести.
Пока суммарный ток зарядки и текущий через резисторы R13- R24 достаточно велик, он течет, в основном,
через эмиттерный переход транзистора VT1. Транзистор при этом открывается и загорается светодиод HL1, индицируя процесс зарядки. Когда ток уменьшится до значения, определяемого сопротивлением резистора R29 и напряжением открывания транзистора VT1, этот транзистор закроется и светодиод погаснет. Было собрано (с исключением переключателя SA2 и с добавлением индикатора окончания зарядки по схеме рис. 118) зарядное устройство для батарей из аккумуляторов ЦНК-0,45 (до шести штук). Чтобы ограничить выходной ток на уровне 150 мА,потребо-вался резистор (R1 на рис. 117) сопротивлением 8,2 Ом. В индикаторе окончания зарядки при сопротивлении резистора R29 30 Ом уменьшение яркости свечения светодиода начиналось при токе зарядки 10 мА, полностью он погасал при токе 7 мА. В устройстве использован трансформатор ТПП-220 [16], все шесть вторичных обмоток которого соединены последовательно. Перемычки удобно устанавливать так: 16-17, 18-11, 12-13, 14-19, 20-21, напряжение на диодный мост снимают с выводов 15 и 22. Напряжение сети подают на выводы 2 и 9 трансформатора, между выводами 3 и 7 необходимо также установить перемычку. Но, конечно, пригоден любой другой трансформатор, обеспечивающий на вторичной обмотке напряжение 11...12 В при токе не менее 400 мА. Все элементы устройства, кроме сетевого трансформатора с выключателем питания, предохранителя, переключателя SA3 и выходных гнезд, смонтированы на печатной плате размерами 90 х 50 мм (рис. 119). Плата рассчитана на установку диодного моста КЦ407А (VD1), оксидного конденсатора К50-29 (С1) емкостью 2200 мкф на номинальное напряжение 16 В. Другие детали такие, как в конструкции первого варианта устройства. Микросхемы DA1 и DA2 установлены на игольчатые теплоотводы размерами 45 х 25 мм, высота игл - 20 мм.
Монтажная плата с помощью резьбовых втулок, вклепанных в ее углы, вместе с другими деталями установлена в пластмассовом корпусе размерами 133х100х56 мм.
Светодиод на удлиненных выводах выведен на крышку корпуса. Налаживают устройство в таком порядке. Подстроенными резисторами R25 и R27 устанавливают на выходе напряжения 8,4 и 1,4 В при положениях "6" и "1" переключателя SA3 соответственно, выходной ток, равный 150 мА, - подбором резистора R1 и порог погасания светодиода - подбором резистора R29. В случае возникновения генерации микросхемы DA1 между ее входным выводом 2 и минусовым проводом цепи питания включают конденсатор С* (несколько десятков или сотен нанофарад), обозначенный на рис. 119 штриховыми линиями. Печатная плата такого варианта зарядного устройства может стать основой и для устройства по схеме рис. 117-на ней предусмотрены контакты для подключения переключателя
SA2 с резисторами R2-R12. Каждая из микросхем должна быть установлена на свой радиатор таких же габаритов, что и в устройстве по схеме рис. 113. Любителям слушать музыку, используя плейер, источником питания которого служит батарея из двух аккумуляторов ЦНК-0,45, предлагается зарядное устройство попроще (рис. 120, схема отличается от рис. 105 номиналами и отсутствием конденсатора, включенного параллельно вторичной обмотке трансформатора). Вторичная обмотка сетевого трансформатора Т1 должна быть рассчитана на напряжение 8...9 В и ток не менее 160 мА. Микросхему следует снабдить небольшим пластинчатым теплоотводом. Выходное напряжение, равное 2,8 В, устанавливают подстроечным резистором R2, а затем, нагрузив устройство на три последовательно включенных диода на ток 300 мА или два разряженных аккумулятора, подбором резистора R1 - выходной ток 150... 180 мА. А если микросхемы КР142ЕН12А нет? В таком случае зарядное устройство аналогичного назначения рекомендуется собрать по схеме рис. 121. Основой такого варианта зарядного устройства может быть блок питания ПМ-1, предназначаемый для питания электродвигателей игрушек, любой другой трансформатор, понижающий напряжение сети до 6...6,3 В, или сетевой адаптер. Все детали устройства, кроме сетевого трансформатора, монтируют на печатной плате, чертеж которой приведен на рис. 122, рассчитанной на установку на ней оксидных конденсаторов К50-6 (С1-СЗ), подстроечного резистора СПЗ-
19б (R5), светодиодов АЛ341А или АЛ307Б. Светодиоды выведены наружу через вентиляционные щели кожуха. Транзистор VT1 снабжен небольшим пластинчатым теплоотводом из латуни (или алюминия) толщиной 0,5 мм. Монтажная плата закреплена в корпусе на двух вклепанных в нее резьбовых втулках. При настройке этого устройства, как и предыдущего, сначала устанавливают выходное напряжение 2,8 В (резистором R5), после чего его нагружают тремя соединенными последовательно диодами на рабочий ток 300 мА и подбором резистора R7 добиваются выходного тока 150... 180 мА. Светодиод HL2 при этом гаснет. Корпусы описанных зарядных устройств должны иметь вентиляционные отверстия для обеспечения охлаждения теплоотводов микросхем или транзисторов.