Первое свойство непосредственно следует из определения левостороннего дерева. Для доказательства второго свойства рассмотрим левостороннее дерево , у которого длина правой ветви равна . Индукцией по числу докажем, что число узлов в таком дереве удовлетворяет неравенству . Действительно, при утверждение очевидно. При левое и правое поддеревья дерева будут левосторонними, а ранги их корней больше или равны . Следовательно, по предположению индукции число узлов в каждом из них больше или равно , а в дереве — больше или равно
Для реализации приоритетной очереди с помощью левосторонней кучи будем использовать узлы вида
содержащие следующую информацию:
Куча представляется указателем на ее корень. Если — указатель на корень кучи, то через будем обозначать и саму кучу. Заметим, что указатель на родителя используется лишь в операциях УДАЛИТЬ и УМЕНЬШИТЬ_КЛЮЧ (см. ниже).